Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Circ Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533639

RESUMO

RATIONALE: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the early morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. OBJECTIVE: The objectives are to investigate the recruitment of transcription factors to time-of-day differentially accessible chromatin that underpins day-night ion channel rhythms and to assess the significance of this for the heart's day-night rhythm in VA susceptibility. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the inactive (zeitgeber time, time of lights on, start of sleep period) and active (time of lights off, start of awake period [ZT12]) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) binding site in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.

2.
Neurobiol Stress ; 28: 100589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38075021

RESUMO

Many stress-related neuropsychiatric disorders display pronounced sex differences in their frequency and clinical symptoms. Glucocorticoids are primary stress hormones that have been implicated in the development of these disorders but whether they contribute to the observed sex bias is poorly understood. Glucocorticoids signal through two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR). To elucidate the sex-specific and independent actions of glucocorticoids in the hippocampus, we developed knockout mice lacking hippocampal GR, MR, or both GR and MR. Mice deficient in hippocampal MR or both GR and MR showed an altered molecular phenotype of CA2 neurons and reduced anxiety-like behavior in both sexes, but altered stress adaptation behavior only in females and enhanced fear-motivated cue learning only in males. All three knockout mouse models displayed reduced sociability but only in male mice. Male and female mice deficient in both hippocampal GR and MR exhibited extensive neurodegeneration in the dentate gyrus. Global transcriptomic analysis revealed a marked expansion in the number of dysregulated genes in the hippocampus of female knockout mice compared to their male counterparts; however, the overall patterns of gene dysregulation were remarkably similar in both sexes. Within and across sex comparisons identified key GR and MR target genes and associated signaling pathways underlying the knockout phenotypes. These findings define major sex-dependent and independent effects of GR/MR imbalances on gene expression and functional profiles in the hippocampus and inform new strategies for treating men and women with stress-related neuropsychiatric disorders.

3.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123152

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Proteínas de Membrana Transportadoras , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
4.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123153

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Bases de Dados Factuais , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares
5.
J Virol ; 97(10): e0130523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823644

RESUMO

IMPORTANCE: A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Receptores de Glucocorticoides , Ativação Viral , Animais , Feminino , Masculino , Camundongos , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Gânglio Trigeminal , Ubiquitina-Proteína Ligases/metabolismo , Ativação Viral/genética , Latência Viral/genética
6.
Endocrinology ; 164(11)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738419

RESUMO

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.


Assuntos
Tecido Adiposo , Receptores de Glucocorticoides , Camundongos , Animais , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Homeostase/genética , Camundongos Knockout , Genes Reguladores , RNA Mensageiro/metabolismo
7.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
8.
J Thromb Haemost ; 21(11): 3207-3223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37336437

RESUMO

BACKGROUND: Glucocorticoids are widely known for their immunomodulatory action. Their synthetic analogs are used to treat several autoimmune diseases, including immune thrombocytopenia. However, their efficacy and mechanisms of action in immune thrombocytopenia are not fully understood. OBJECTIVES: To investigate the mechanism of glucocorticoid actions on platelet production. METHODS: The actions of glucocorticoids on platelet production were studied combining in vivo, ex vivo and in vitro approaches. RESULTS: Dexamethasone reduced bleeding in mice and rapidly increased circulating young platelet counts. In vitro glucocorticoid treatment stimulated proplatelet formation by megakaryocytes and platelet-like particle release. This effect was blocked by glucocorticoid receptor antagonist RU486, indicating a glucocorticoid receptor-dependent mechanism. Genome-wide analysis revealed that dexamethasone regulates the expression of >1000 genes related to numerous cellular functions, including predominant cytoplasm and cytoskeleton reorganization. Dexamethasone and other glucocorticoids induced the expression of Gda (the gene encoding guanine deaminase), which has been reported to have a role in dendrite development. Inhibition of guanine deaminase enzymatic activity blocked dexamethasone stimulation of proplatelet formation, implicating a critical role for this enzyme in glucocorticoid-mediated platelet production. CONCLUSION: Our findings identify glucocorticoids as new regulators of thrombopoiesis.


Assuntos
Guanina Desaminase , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Camundongos , Animais , Megacariócitos/metabolismo , Trombopoese/fisiologia , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Guanina Desaminase/metabolismo , Transcriptoma , Plaquetas/metabolismo , Trombocitopenia/metabolismo , Dexametasona/farmacologia
9.
Endocrinology ; 164(7)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224504

RESUMO

Corticosteroids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and are routinely prescribed to breast cancer patients undergoing chemotherapy treatment to alleviate side effects. Triple-negative breast cancers (TNBCs) account for 15% to 20% of diagnoses and lack expression of estrogen and progesterone receptors as well as amplified HER2, but they often express high GR levels. GR is a mediator of TNBC progression to advanced metastatic disease; however, the mechanisms underpinning this transition to more aggressive behavior remain elusive. We previously showed that tissue/cellular stress (hypoxia, chemotherapies) as well as factors in the tumor microenvironment (transforming growth factor ß [TGF-ß], hepatocyte growth factor [HGF]) activate p38 mitogen-activated protein kinase (MAPK), which phosphorylates GR on Ser134. In the absence of ligand, pSer134-GR further upregulates genes important for responses to cellular stress, including key components of the p38 MAPK pathway. Herein, we show that pSer134-GR is required for TNBC metastatic colonization to the lungs of female mice. To understand the mechanisms of pSer134-GR action in the presence of GR agonists, we examined glucocorticoid-driven transcriptomes in CRISPR knock-in models of TNBC cells expressing wild-type or phospho-mutant (S134A) GR. We identified dexamethasone- and pSer134-GR-dependent regulation of specific gene sets controlling TNBC migration (NEDD9, CSF1, RUNX3) and metabolic adaptation (PDK4, PGK1, PFKFB4). TNBC cells harboring S134A-GR displayed metabolic reprogramming that was phenocopied by pyruvate dehydrogenase kinase 4 (PDK4) knockdown. PDK4 knockdown or chemical inhibition also blocked cancer cell migration. Our results reveal a convergence of GR agonists (ie, host stress) with cellular stress signaling whereby pSer134-GR critically regulates TNBC metabolism, an exploitable target for the treatment of this deadly disease.


Assuntos
Receptores de Glucocorticoides , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Fosfofrutoquinase-2/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
10.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
11.
Cell Death Discov ; 8(1): 494, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539401

RESUMO

Bcl-2 is an anti-apoptotic protein that promotes cell survival and resistance to cell death. Predictably, Bcl-2 as well as other anti-apoptotic Bcl-2 family members have been found to be overexpressed in a variety of human cancers. Approaches to overcome apoptotic resistance afforded by Bcl-2 in cells include anti-sense oligonucleotides, drugs that inhibit Bcl-2 function, and BH3 mimics have not been universally effective; thus, the need to understand the underlying mechanism of this resistance is vital. Glucocorticoids are stress hormones that act through their cognate receptors to control the transcription of numerous target genes, and in turn regulate a diverse array of biological processes. Synthetic glucocorticoids, such as dexamethasone, are prescribed in many chemotherapy protocols for neoplasms of lymphoid origin based on their ability to inhibit lymphocyte proliferation and promote apoptosis. However, lymphoid cells expressing Bcl-2 are resistant to glucocorticoid-induced cell death. We observed both pro- and anti-apoptotic characteristics in lymphoid cells expressing Bcl-2 following glucocorticoid treatment. These cells exhibited a profound change in their intracellular ionic composition, but a limited apoptotic ion flux and the absence of cell death. Provocatively, mimicking the loss of intracellular potassium using a low dose of a microbial toxin that acts as a potassium ionophore in combination with dexamethasone overcame the resistance afforded by Bcl-2 and killed the cells. Extending our study using other potassium ionophores revealed that direct depolarization of the mitochondria membrane potential coupled with prior treatment with glucocorticoids is the key mechanism for activating the cell death program and bypassing the resistance afforded by Bcl-2 in lymphoid cells. Finally, we show that the duration of dexamethasone pre-treatment is critical for regulating distinct genes and signaling pathways that sensitize the cells to die.

12.
Front Cardiovasc Med ; 9: 931054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935637

RESUMO

Background: Takotsubo syndrome is an acute cardiac condition usually involving abnormal regional left ventricular wall motion and impaired left ventricular contractility. It is due mainly to hyper-stimulation of the sympathetic nerve system, inducing an excess of catecholamines, usually triggered by intense psychological or physiological stress. The relationship between Takotsubo syndrome and the circulating stress hormones cortisol and copeptin (a surrogate marker of arginine vasopressin) has not been well documented. Case summary: Here, we describe the dynamic changes in circulating cortisol and copeptin during an entire episode of Takotsubo syndrome in a post-partum woman after spontaneous vaginal delivery. The patient was diagnosed with inverted Takotsubo syndrome accompanied by HELLP syndrome. We found qualitative and quantitative changes in cortisol: a loss of circadian rhythm and a three-fold elevation in the plasma concentration of the hormone with a peak appearing several hours before circulating cardiac biomarkers began to rise. By contrast, levels of copeptin remained normal during the entire episode. Discussion: Our findings indicate that the levels of cortisol change during Takotsubo syndrome whereas those of copeptin do not. This association between elevated cortisol and Takotsubo syndrome suggests that aberrant levels of this stress hormone may contribute to the observed cardiac pathology. We conclude that biochemical assays of circulating cortisol and cardiac biomarkers may be a useful complement to the diagnosis of Takotsubo syndrome by non-invasive cardiac imaging.

13.
Cells ; 11(12)2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741034

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRß) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Esteroides/metabolismo
14.
Neurobiol Stress ; 17: 100440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252485

RESUMO

Stress-related disorders display differences at multiple levels according to sex. While most studies have been conducted in male rodents, less is known about comparable outcomes in females. In this study, we found that the chronic restraint stress model (2.5 h/day for 14 days) triggers different somatic responses in male and female adult rats. Chronic restraint produced a loss in sucrose preference and novel location preference in male rats. However, chronic restraint failed to produce loss of sucrose preference in females, while it improved spatial performance. We then characterized the molecular responses associated with these behaviors in the hippocampus, comparing the dorsal and ventral poles. Notably, sex- and hippocampal pole-specific transcriptional signatures were observed, along with a significant concordance between the female ventral and male dorsal profiles. Functional enrichment analysis revealed both shared and specific terms associated with each pole and sex. By looking into signaling pathways that were associated with these terms, we found an ample array of sex differences in the dorsal and, to a lesser extent, in the ventral hippocampus. These differences were mainly present in synaptic TrkB signaling, Akt pathway, and glutamatergic receptors. Unexpectedly, the effects of stress on these pathways were rather minimal and mostly dissociated from the sex-specific behavioral outcomes. Our study suggests that female rats are resilient and males susceptible to the restraint stress exposure in the sucrose preference and object location tests, while the activity of canonical signaling pathways is primarily determined by sex rather than stress in the dorsal and ventral hippocampus.

15.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34784298

RESUMO

Synthetic immunosuppressive glucocorticoids (GCs) are widely used to control inflammatory bowel disease (IBD). However, the impact of GC signaling on intestinal tumorigenesis remains controversial. Here, we report that intestinal epithelial GC receptor (GR), but not whole intestinal tissue GR, promoted chronic intestinal inflammation-associated colorectal cancer in both humans and mice. In patients with colorectal cancer, GR was enriched in intestinal epithelial cells and high epithelial cell GR levels were associated with poor prognosis. Consistently, intestinal epithelium-specific deletion of GR (GR iKO) in mice increased macrophage infiltration, improved tissue recovery, and enhanced antitumor response in a chronic inflammation-associated colorectal cancer model. Consequently, GR iKO mice developed fewer and less advanced tumors than control mice. Furthermore, oral GC administration in the early phase of tissue injury delayed recovery and accelerated the formation of aggressive colorectal cancers. Our study reveals that intestinal epithelial GR signaling repressed acute colitis but promoted chronic inflammation-associated colorectal cancer. Our study suggests that colorectal epithelial GR could serve as a predictive marker for colorectal cancer risk and prognosis. Our findings further suggest that, although synthetic GC treatment for IBD should be used with caution, there is a therapeutic window for GC therapy during colorectal cancer development in immunocompetent patients.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Intestinos/patologia , Receptores de Glucocorticoides/uso terapêutico , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
16.
J Am Heart Assoc ; 10(17): e015868, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472367

RESUMO

Background Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex-specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. Methods and Results Genomewide studies show that glucocorticoids inhibit estrogen-mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5-HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5-HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5-HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5-HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. Conclusions These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion.


Assuntos
Estrogênios/metabolismo , Glucocorticoides , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Receptor 5-HT2B de Serotonina , Apoptose , Morte Celular , Receptor alfa de Estrogênio , Feminino , Glucocorticoides/farmacologia , Humanos , Hipóxia , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Receptores de Glucocorticoides/genética
17.
Br J Pharmacol ; 178 Suppl 1: S246-S263, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529827

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
18.
Br J Pharmacol ; 178 Suppl 1: S1-S26, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529830

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Transporte Proteico , Receptores Citoplasmáticos e Nucleares
19.
Cell Mol Gastroenterol Hepatol ; 12(5): 1831-1845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358715

RESUMO

BACKGROUND & AIMS: Aberrant immune activation is associated with numerous inflammatory and autoimmune diseases and contributes to cancer development and progression. Within the stomach, inflammation drives a well-established sequence from gastritis to metaplasia, eventually resulting in adenocarcinoma. Unfortunately, the processes that regulate gastric inflammation and prevent carcinogenesis remain unknown. Tristetraprolin (TTP) is an RNA-binding protein that promotes the turnover of numerous proinflammatory and oncogenic messenger RNAs. Here, we assess the role of TTP in regulating gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) development. METHODS: We used a TTP-overexpressing model, the TTPΔadenylate-uridylate rich element mouse, to examine whether TTP can protect the stomach from adrenalectomy (ADX)-induced gastric inflammation and SPEM. RESULTS: We found that TTPΔadenylate-uridylate rich element mice were completely protected from ADX-induced gastric inflammation and SPEM. RNA sequencing 5 days after ADX showed that TTP overexpression suppressed the expression of genes associated with the innate immune response. Importantly, TTP overexpression did not protect from high-dose-tamoxifen-induced SPEM development, suggesting that protection in the ADX model is achieved primarily by suppressing inflammation. Finally, we show that protection from gastric inflammation was only partially due to the suppression of Tnf, a well-known TTP target. CONCLUSIONS: Our results show that TTP exerts broad anti-inflammatory effects in the stomach and suggest that therapies that increase TTP expression may be effective treatments of proneoplastic gastric inflammation. Transcript profiling: GSE164349.


Assuntos
Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Inflamação/complicações , Metaplasia/etiologia , Metaplasia/patologia , Metaplasia/prevenção & controle , Tristetraprolina/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Regulação da Expressão Gênica , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/metabolismo , Metaplasia/metabolismo , Camundongos , Camundongos Knockout , Tamoxifeno/administração & dosagem , Tamoxifeno/efeitos adversos
20.
Neurobiol Stress ; 15: 100369, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34368410

RESUMO

Chronic stress contributes to numerous human pathologies including cognition impairments and psychiatric disorders. Glucocorticoids are primary stress hormones that activate two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR), that are both highly expressed in the hippocampus. To investigate potential combinatorial actions of hippocampal GR and MR, we developed mice with conditional knockout of both GR and MR in the hippocampus and compared them to their single knockout counterparts. Mice lacking MR alone or both GR and MR in the hippocampus exhibited altered expression of multiple CA2-specific neuronal markers and enhanced cue-dependent learning in a conditioned fear test. Provocatively, in contrast to the single knockouts, mice depleted of both GR and MR showed profound neurodegeneration of the hippocampus. Neuronal death was increased and neurogenesis was reduced in the dentate gyrus of the double knockout mice. Global gene expression assays of the knockout mice revealed a synergistic increase in the number of dysregulated genes in the hippocampus lacking both GR and MR. This large cohort of genes reliant on both GR and MR for expression was strongly associated with cell death and cell proliferation pathways. GR/MR complexes were detected in CA1 and dentate gyrus neurons suggesting receptor heterodimers contribute to the joint actions of GR and MR. These findings reveal an obligate role for MR signaling in regulating the molecular phenotype of CA2 neurons and demonstrate that combinatorial actions of GR and MR are essential for preserving dentate gyrus neurons and maintaining hippocampal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...